

higher education & training

Department: Higher Education and Training REPUBLIC OF SOUTH AFRICA

T750**(E)**(J29)T

NATIONAL CERTIFICATE

INDUSTRIAL ELECTRONICS N1

(8080641)

29 July 2019 (X-Paper) 09:00–12:00

This question paper consists of 8 pages and 1 formula sheet.

DEPARTMENT OF HIGHER EDUCATION AND TRAINING REPUBLIC OF SOUTH AFRICA

NATIONAL CERTIFICATE INDUSTRIAL ELECTRONICS N1 TIME: 3 HOURS MARKS: 100

INSTRUCTIONS AND INFORMATION

- 1. Answer ALL the questions.
- 2. Read ALL the questions carefully.
- 3. Number the answers according to the numbering system used in this question paper.
- 4. Keep subsections of questions together.
- 5. Take π as 3,142.
- 6. Start each question on a NEW page.
- 7. Sketches must be large, neat and fully labelled.
- 8. Write neatly and legibly.

QUESTION 1

1.1 Choose a term from COLUMN B that matches a description in COLUMN A. Write only the letter (A–P) next to the question number (1.1.1–1.1.10) in the ANSWER BOOK.

	COLUMN A		COLUMN B			
1.1.1	Atom with THREE valence electrons	A	hydrometer			
1.1.2		В	direct current			
1.1.2	Majority charge carriers found in N-type materials	С	conductor			
1.1.3	Instrument used to measure current flow	D	doping			
1.1.4	Current flowing in both directions	Е	transformer			
	Current flowing in both directions Materials with few or no free	F	trivalent			
1.1.5	electrons	G	holes			
1.1.6	Process of adding impurities to intrinsic semiconductor materials	н	semiconductor			
	intrinsic semiconductor materials		henry			
1.1.7	Electronic component normally used for rectification	J	ammeter			
1.1.8	Component working on the principle	К	pentavalent			
	of mutual induction	L	insulator			
1.1.9	Not a good conductor or good insulator in pure state	М	electrons			
1.1.10	Unit of measurement for inductance	Ν	diode			
		0	transistor			
		Р	alternating current			

(10)

1.2 Refer to FIGURE ONE and determine each of the values below.

FIGURE 1

1.2.1	Total resistance of circuit	(8)			
1.2.2	Current flow through whole circuit	(3)			
1.2.3	Total power dissipated by circuit	(3)			
Give the colour code for resistor R_3 (6 Ω) which has a tolerance of 1%.					

QUESTION 2

1.3

2.2

2.1 Three identical cells with a combined emf of 4,5 volts and a total internal resistance of 1,5 ohms are connected to one another in series. This battery is then connected across an external resistor with a value of 25 Ω .

Calculate each of the following values:

	2.1.1	Internal resistance of ONE cell	(2)				
	2.1.2	Total resistance of circuit	(2)				
	2.1.3	Current flow through circuit	(3)				
	2.1.4	Voltage drop across external resistor					
A conductor has a resistance of 5 Ω at a temperature of 0 °C.							
Calculate the resistance if the temperature increases to 60 °C and the conductor has a coefficient of 0,0059 Ω /°C.							

2.3 State FOUR factors that affect the strength of an electromagnet. (4)

2.4 Sketch the IEC symbols for each of the following components:

- 2.4.1 Variable inductor
- 2.4.2 Preset capacitor
- 2.4.3 Rheostat
 - 2.4.4 Auto transformer
 - 2.4.5 Potentiometer

 (5×1) (5)

2.5 State THREE advantages of primary cells.

(3) [**25**]

QUESTION 3

- 3.1 Various options are given as possible answers to the following questions. Choose the answer and write only the letter (A–D) next to the question number (3.1.1–3.1.10) in the ANSWER BOOK.
 - 3.1.1 Rectifier diodes conduct when ...
 - A the P-type material is connected to the positive supply and the N-type to the negative supply.
 - B the P-type and N-type materials are connected to the positive supply.
 - C the N-type material is connected to the positive supply and the P-type to the negative supply.
 - D the diode is reverse biased.
 - 3.1.2 Potential difference is measured with an instrument called a ...
 - A voltmeter.
 - B amperemeter.
 - C wattmeter.
 - D ohmmeter.
 - 3.1.3 A disadvantage of an analogue multimeter is that ...
 - A the ohm scale is linear. $\stackrel{\bigcirc}{\simeq}$
 - B the pointer has to be zeroed each time it is used.
 - C there are no errors of parallax.
 - D it switches off when not in use (auto shut-off feature).

- 3.1.4 Semi-conductor materials have ...
 - A six valence electrons.
 - B eight valence electrons.
 - C no valence electrons.
 - D four valence electrons.
- 3.1.5 An insulator ...
 - A is an element that allows current to flow because it has many free electrons.

 $(\underline{\cdot})$

- B is an element that has an abundance of protons.
- C allows current to flow because it forms metallic bonds.
- D does not allow current to flow because it has no free electrons.
- 3.1.6 The colour code for a 6 Ω -resistor with a 2% tolerance value is ...
 - A blue; black; black; silver.
 - B blue; brown; black; silver.
 - C blue; black; gold; red.
 - D blue; black; gold; silver.
- 3.1.7 An atom becomes an ion when it ...
 - A forms ionic bonds.
 - B combines with other atoms to form covalent bonds.
 - C gains or loses electrons.
 - D becomes polarised.
- 3.1.8 The junction voltage of silicon is approximately ...
 - A 0,07 volts.
 - B 0,7 volts.
 - C 0,2 volts.
 - D 0,02 volts.
- 3.1.9 A bipolar NPN transistor has ...
 - A two junctions.
 - B three junctions.
 - C one barrier layer.
 - D no junctions.
- 3.1.10 The ... is a factor that can affect capacitance.

 \bigcirc

- A temperature
- B thickness of the plates
- C dielectric constant
- D resistance of the plates

(10×1) (10)

3.2 The resistance of a silver conductor is 10 Ω .

Calculate	the	length	of	the	conductor	if	the	cross-sectiona	l area	is	
0,000010	m ² ar	nd the s	oecifi	ic res	sistance of s	silve	er is (0,0159 μΩm.			(4)

- 3.3 Name the FOUR factors that influence the resistance of a conductor. (4)
- 3.4 Explain how each factor in QUESTION 3.3 influences the resistance. (4×2) (8)

[26]

QUESTION 4

- 4.1 Choose the correct word or words from those given in brackets. Write only the word or words next to the question number (4.1.1–4.1.10) in the ANSWER BOOK.
 - 4.1.1 Transformers have no moving parts and are regarded as having (no losses/high losses) when in operation.
 - 4.1.2 The term *lattice structure* refers to (insulators/semiconductors).
 - 4.1.3 A (digital/analogue) measuring instrument is accurate and easy to use.
 - 4.1.4 A zener diode is a (voltage regulator/current regulator).
 - 4.1.5 A hydrometer is normally used to measure (relative density/specific resistivity).
 - 4.1.6 Energy is the (rate/ability) of doing work.
 - 4.1.7 A bipolar diode has (one/two/three) junctions.
 - 4.1.8 An atom that has lost electrons is known as a (conductor/ion/proton).
 - 4.1.9 Like or similar poles of a bar magnet (repel/attract) each other.
 - 4.1.10 When the resistance of a conductor increases with a rise in temperature it is regarded as having a (positive/negative) temperature coefficient.
 (10 × 1)

 (10×1) (10)

- 4.2 4.2.1 Make a neat, fully labelled sketch of an atom with an atomic number of ELEVEN. (6)
 - 4.2.2 Does the atom in QUESTION 4.2.1 represent a conductor or an insulator? (1)

- 4.3 Indicate whether the following statements are TRUE or FALSE. Choose the answer and write only 'True' or 'False' next to the question number (4.3.1–4.3.5) in the ANSWER BOOK.
 - 4.3.1 A cell can also be referred to as a battery.
 - 4.3.2 Primary cells are used in the manufacturing of a lead-acid battery.
 - 4.3.3 Transistors are used for rectification purposes.
 - 4.3.4 Cells must be connected in series with one another in order to increase the current capacity of a battery.
 - 4.3.5 The colour code of a 9 Ω resistor with a tolerance value of 20% is white; black; black; no colour.

(5 × 1) (5)

[22]

TOTAL: 100

INDUSTRIAL ELECTRONICS N1

FORMULA SHEET

$$V = I \times R$$

$$P = \frac{V^{2}}{R}$$

$$P = I^{2}R$$

$$P = V \times I$$

$$I = \frac{E}{R + r}$$

$$Q = C \times V$$

$$R = \frac{\rho \ell}{A}$$

$$R_{t} = R_{0}(1 + \alpha_{o}\Delta t)$$

$$R_{t} = R_{1} + R_{2} + R_{3}....R_{n}$$

$$C_{t} = C_{1} + C_{2} + C_{3}....C_{n}$$

$$L_{t} = L_{1} + L_{2} + L_{3}....L_{n}$$

$$\frac{1}{C_{t}} = \frac{1}{C_{1}} + \frac{1}{C_{2}} + \frac{1}{C_{3}}....\frac{1}{C_{n}}$$

$$\frac{1}{R_{t}} = \frac{1}{R_{1}} + \frac{1}{R_{2}} + \frac{1}{R_{3}}....\frac{1}{R_{n}}$$

$$\frac{1}{L_{t}} = \frac{1}{L_{1}} + \frac{1}{L_{2}} + \frac{1}{L_{3}}....\frac{1}{L_{n}}$$

$$\frac{V_{p}}{V_{s}} = \frac{N_{p}}{N_{s}} = \frac{I_{s}}{I_{p}}$$